Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atoms, hyperplanes, and covering in a left vector space (or module)
lsatlspsn
Next ⟩
islsati
Metamath Proof Explorer
Ascii
Unicode
Theorem
lsatlspsn
Description:
The span of a nonzero singleton is an atom.
(Contributed by
NM
, 16-Jan-2015)
Ref
Expression
Hypotheses
lsatset.v
⊢
V
=
Base
W
lsatset.n
⊢
N
=
LSpan
⁡
W
lsatset.z
⊢
0
˙
=
0
W
lsatset.a
⊢
A
=
LSAtoms
⁡
W
lsatlspsn.w
⊢
φ
→
W
∈
LMod
lsatlspsn.x
⊢
φ
→
X
∈
V
∖
0
˙
Assertion
lsatlspsn
⊢
φ
→
N
⁡
X
∈
A
Proof
Step
Hyp
Ref
Expression
1
lsatset.v
⊢
V
=
Base
W
2
lsatset.n
⊢
N
=
LSpan
⁡
W
3
lsatset.z
⊢
0
˙
=
0
W
4
lsatset.a
⊢
A
=
LSAtoms
⁡
W
5
lsatlspsn.w
⊢
φ
→
W
∈
LMod
6
lsatlspsn.x
⊢
φ
→
X
∈
V
∖
0
˙
7
eqid
⊢
N
⁡
X
=
N
⁡
X
8
sneq
⊢
v
=
X
→
v
=
X
9
8
fveq2d
⊢
v
=
X
→
N
⁡
v
=
N
⁡
X
10
9
rspceeqv
⊢
X
∈
V
∖
0
˙
∧
N
⁡
X
=
N
⁡
X
→
∃
v
∈
V
∖
0
˙
N
⁡
X
=
N
⁡
v
11
6
7
10
sylancl
⊢
φ
→
∃
v
∈
V
∖
0
˙
N
⁡
X
=
N
⁡
v
12
1
2
3
4
islsat
⊢
W
∈
LMod
→
N
⁡
X
∈
A
↔
∃
v
∈
V
∖
0
˙
N
⁡
X
=
N
⁡
v
13
5
12
syl
⊢
φ
→
N
⁡
X
∈
A
↔
∃
v
∈
V
∖
0
˙
N
⁡
X
=
N
⁡
v
14
11
13
mpbird
⊢
φ
→
N
⁡
X
∈
A