Metamath Proof Explorer


Theorem lsatlspsn

Description: The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lsatset.v V = Base W
lsatset.n N = LSpan W
lsatset.z 0 ˙ = 0 W
lsatset.a A = LSAtoms W
lsatlspsn.w φ W LMod
lsatlspsn.x φ X V 0 ˙
Assertion lsatlspsn φ N X A

Proof

Step Hyp Ref Expression
1 lsatset.v V = Base W
2 lsatset.n N = LSpan W
3 lsatset.z 0 ˙ = 0 W
4 lsatset.a A = LSAtoms W
5 lsatlspsn.w φ W LMod
6 lsatlspsn.x φ X V 0 ˙
7 eqid N X = N X
8 sneq v = X v = X
9 8 fveq2d v = X N v = N X
10 9 rspceeqv X V 0 ˙ N X = N X v V 0 ˙ N X = N v
11 6 7 10 sylancl φ v V 0 ˙ N X = N v
12 1 2 3 4 islsat W LMod N X A v V 0 ˙ N X = N v
13 5 12 syl φ N X A v V 0 ˙ N X = N v
14 11 13 mpbird φ N X A