| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsatset.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lsatset.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lsatset.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 5 |
|
lsatlspsn.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
lsatlspsn.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 7 |
|
eqid |
⊢ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) |
| 8 |
|
sneq |
⊢ ( 𝑣 = 𝑋 → { 𝑣 } = { 𝑋 } ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑣 = 𝑋 → ( 𝑁 ‘ { 𝑣 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 10 |
9
|
rspceeqv |
⊢ ( ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) |
| 11 |
6 7 10
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) |
| 12 |
1 2 3 4
|
islsat |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 14 |
11 13
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) |