Step |
Hyp |
Ref |
Expression |
1 |
|
islsati.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
islsati.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
islsati.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
difss |
⊢ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ⊆ 𝑉 |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
6 |
1 2 5 3
|
islsat |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑈 = ( 𝑁 ‘ { 𝑣 } ) ) ) |
7 |
6
|
biimpa |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴 ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑈 = ( 𝑁 ‘ { 𝑣 } ) ) |
8 |
|
ssrexv |
⊢ ( ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ⊆ 𝑉 → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) 𝑈 = ( 𝑁 ‘ { 𝑣 } ) → ∃ 𝑣 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑣 } ) ) ) |
9 |
4 7 8
|
mpsyl |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴 ) → ∃ 𝑣 ∈ 𝑉 𝑈 = ( 𝑁 ‘ { 𝑣 } ) ) |