Step |
Hyp |
Ref |
Expression |
1 |
|
islsati.v |
|- V = ( Base ` W ) |
2 |
|
islsati.n |
|- N = ( LSpan ` W ) |
3 |
|
islsati.a |
|- A = ( LSAtoms ` W ) |
4 |
|
difss |
|- ( V \ { ( 0g ` W ) } ) C_ V |
5 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
6 |
1 2 5 3
|
islsat |
|- ( W e. X -> ( U e. A <-> E. v e. ( V \ { ( 0g ` W ) } ) U = ( N ` { v } ) ) ) |
7 |
6
|
biimpa |
|- ( ( W e. X /\ U e. A ) -> E. v e. ( V \ { ( 0g ` W ) } ) U = ( N ` { v } ) ) |
8 |
|
ssrexv |
|- ( ( V \ { ( 0g ` W ) } ) C_ V -> ( E. v e. ( V \ { ( 0g ` W ) } ) U = ( N ` { v } ) -> E. v e. V U = ( N ` { v } ) ) ) |
9 |
4 7 8
|
mpsyl |
|- ( ( W e. X /\ U e. A ) -> E. v e. V U = ( N ` { v } ) ) |