Metamath Proof Explorer


Theorem islsati

Description: A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014)

Ref Expression
Hypotheses islsati.v V = Base W
islsati.n N = LSpan W
islsati.a A = LSAtoms W
Assertion islsati W X U A v V U = N v

Proof

Step Hyp Ref Expression
1 islsati.v V = Base W
2 islsati.n N = LSpan W
3 islsati.a A = LSAtoms W
4 difss V 0 W V
5 eqid 0 W = 0 W
6 1 2 5 3 islsat W X U A v V 0 W U = N v
7 6 biimpa W X U A v V 0 W U = N v
8 ssrexv V 0 W V v V 0 W U = N v v V U = N v
9 4 7 8 mpsyl W X U A v V U = N v