Metamath Proof Explorer


Theorem lsateln0

Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses lsateln0.z 0 ˙ = 0 W
lsateln0.a A = LSAtoms W
lsateln0.w φ W LMod
lsateln0.u φ U A
Assertion lsateln0 φ v U v 0 ˙

Proof

Step Hyp Ref Expression
1 lsateln0.z 0 ˙ = 0 W
2 lsateln0.a A = LSAtoms W
3 lsateln0.w φ W LMod
4 lsateln0.u φ U A
5 eqid Base W = Base W
6 eqid LSpan W = LSpan W
7 5 6 1 2 islsat W LMod U A v Base W 0 ˙ U = LSpan W v
8 3 7 syl φ U A v Base W 0 ˙ U = LSpan W v
9 4 8 mpbid φ v Base W 0 ˙ U = LSpan W v
10 eldifi v Base W 0 ˙ v Base W
11 5 6 lspsnid W LMod v Base W v LSpan W v
12 3 10 11 syl2an φ v Base W 0 ˙ v LSpan W v
13 eleq2 U = LSpan W v v U v LSpan W v
14 12 13 syl5ibrcom φ v Base W 0 ˙ U = LSpan W v v U
15 14 reximdva φ v Base W 0 ˙ U = LSpan W v v Base W 0 ˙ v U
16 9 15 mpd φ v Base W 0 ˙ v U
17 eldifsn v Base W 0 ˙ v Base W v 0 ˙
18 17 anbi1i v Base W 0 ˙ v U v Base W v 0 ˙ v U
19 anass v Base W v 0 ˙ v U v Base W v 0 ˙ v U
20 18 19 bitri v Base W 0 ˙ v U v Base W v 0 ˙ v U
21 20 simprbi v Base W 0 ˙ v U v 0 ˙ v U
22 21 ancomd v Base W 0 ˙ v U v U v 0 ˙
23 22 reximi2 v Base W 0 ˙ v U v U v 0 ˙
24 16 23 syl φ v U v 0 ˙