Step |
Hyp |
Ref |
Expression |
1 |
|
lsateln0.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsateln0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
lsateln0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
lsateln0.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
7 |
5 6 1 2
|
islsat |
⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
9 |
4 8
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
10 |
|
eldifi |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
11 |
5 6
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
12 |
3 10 11
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑣 ∈ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
13 |
|
eleq2 |
⊢ ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑣 ∈ 𝑈 ↔ 𝑣 ∈ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
14 |
12 13
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → 𝑣 ∈ 𝑈 ) ) |
15 |
14
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑣 ∈ 𝑈 ) ) |
16 |
9 15
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑣 ∈ 𝑈 ) |
17 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ 0 ) ) |
18 |
17
|
anbi1i |
⊢ ( ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑣 ∈ 𝑈 ) ↔ ( ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈 ) ) |
19 |
|
anass |
⊢ ( ( ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈 ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈 ) ) ) |
20 |
18 19
|
bitri |
⊢ ( ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑣 ∈ 𝑈 ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈 ) ) ) |
21 |
20
|
simprbi |
⊢ ( ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈 ) ) |
22 |
21
|
ancomd |
⊢ ( ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∈ 𝑈 ∧ 𝑣 ≠ 0 ) ) |
23 |
22
|
reximi2 |
⊢ ( ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑣 ∈ 𝑈 → ∃ 𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
24 |
16 23
|
syl |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |