Step |
Hyp |
Ref |
Expression |
1 |
|
lsatlss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lsatlss.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
6 |
3 4 5 2
|
lsatset |
⊢ ( 𝑊 ∈ LMod → 𝐴 = ran ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ↦ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
7 |
|
eldifi |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
8 |
3 1 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∈ 𝑆 ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∈ 𝑆 ) |
10 |
9
|
fmpttd |
⊢ ( 𝑊 ∈ LMod → ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ↦ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) : ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ⟶ 𝑆 ) |
11 |
10
|
frnd |
⊢ ( 𝑊 ∈ LMod → ran ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ↦ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ⊆ 𝑆 ) |
12 |
6 11
|
eqsstrd |
⊢ ( 𝑊 ∈ LMod → 𝐴 ⊆ 𝑆 ) |