Metamath Proof Explorer


Theorem lsatlssel

Description: An atom is a subspace. (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatlss.s 𝑆 = ( LSubSp ‘ 𝑊 )
lsatlss.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lssatssel.w ( 𝜑𝑊 ∈ LMod )
lssatssel.u ( 𝜑𝑈𝐴 )
Assertion lsatlssel ( 𝜑𝑈𝑆 )

Proof

Step Hyp Ref Expression
1 lsatlss.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lsatlss.a 𝐴 = ( LSAtoms ‘ 𝑊 )
3 lssatssel.w ( 𝜑𝑊 ∈ LMod )
4 lssatssel.u ( 𝜑𝑈𝐴 )
5 1 2 lsatlss ( 𝑊 ∈ LMod → 𝐴𝑆 )
6 3 5 syl ( 𝜑𝐴𝑆 )
7 6 4 sseldd ( 𝜑𝑈𝑆 )