Metamath Proof Explorer
Description: An atom is a subspace. (Contributed by NM, 25-Aug-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lsatlss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
|
|
lsatlss.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
|
|
lssatssel.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
|
|
lssatssel.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
|
Assertion |
lsatlssel |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lsatlss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lsatlss.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
lssatssel.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
lssatssel.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
5 |
1 2
|
lsatlss |
⊢ ( 𝑊 ∈ LMod → 𝐴 ⊆ 𝑆 ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
7 |
6 4
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |