Description: An atom is a set of vectors. (Contributed by NM, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsatssv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsatssv.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) | ||
| lsatssv.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsatssv.g | ⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) | ||
| Assertion | lsatssv | ⊢ ( 𝜑 → 𝑄 ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatssv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsatssv.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) | |
| 3 | lsatssv.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | lsatssv.g | ⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) | |
| 5 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 6 | 5 2 3 4 | lsatlssel | ⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 7 | 1 5 | lssss | ⊢ ( 𝑄 ∈ ( LSubSp ‘ 𝑊 ) → 𝑄 ⊆ 𝑉 ) |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝑄 ⊆ 𝑉 ) |