Description: An atom is a set of vectors. (Contributed by NM, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsatssv.v | |- V = ( Base ` W ) |
|
| lsatssv.a | |- A = ( LSAtoms ` W ) |
||
| lsatssv.w | |- ( ph -> W e. LMod ) |
||
| lsatssv.g | |- ( ph -> Q e. A ) |
||
| Assertion | lsatssv | |- ( ph -> Q C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatssv.v | |- V = ( Base ` W ) |
|
| 2 | lsatssv.a | |- A = ( LSAtoms ` W ) |
|
| 3 | lsatssv.w | |- ( ph -> W e. LMod ) |
|
| 4 | lsatssv.g | |- ( ph -> Q e. A ) |
|
| 5 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 6 | 5 2 3 4 | lsatlssel | |- ( ph -> Q e. ( LSubSp ` W ) ) |
| 7 | 1 5 | lssss | |- ( Q e. ( LSubSp ` W ) -> Q C_ V ) |
| 8 | 6 7 | syl | |- ( ph -> Q C_ V ) |