Metamath Proof Explorer


Theorem lsatssv

Description: An atom is a set of vectors. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lsatssv.v
|- V = ( Base ` W )
lsatssv.a
|- A = ( LSAtoms ` W )
lsatssv.w
|- ( ph -> W e. LMod )
lsatssv.g
|- ( ph -> Q e. A )
Assertion lsatssv
|- ( ph -> Q C_ V )

Proof

Step Hyp Ref Expression
1 lsatssv.v
 |-  V = ( Base ` W )
2 lsatssv.a
 |-  A = ( LSAtoms ` W )
3 lsatssv.w
 |-  ( ph -> W e. LMod )
4 lsatssv.g
 |-  ( ph -> Q e. A )
5 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
6 5 2 3 4 lsatlssel
 |-  ( ph -> Q e. ( LSubSp ` W ) )
7 1 5 lssss
 |-  ( Q e. ( LSubSp ` W ) -> Q C_ V )
8 6 7 syl
 |-  ( ph -> Q C_ V )