Step |
Hyp |
Ref |
Expression |
1 |
|
lsatn0.o |
|- .0. = ( 0g ` W ) |
2 |
|
lsatn0.a |
|- A = ( LSAtoms ` W ) |
3 |
|
lsatn0.w |
|- ( ph -> W e. LMod ) |
4 |
|
lsatn0.u |
|- ( ph -> U e. A ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
7 |
5 6 1 2
|
islsat |
|- ( W e. LMod -> ( U e. A <-> E. v e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { v } ) ) ) |
8 |
3 7
|
syl |
|- ( ph -> ( U e. A <-> E. v e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { v } ) ) ) |
9 |
4 8
|
mpbid |
|- ( ph -> E. v e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { v } ) ) |
10 |
|
eldifsn |
|- ( v e. ( ( Base ` W ) \ { .0. } ) <-> ( v e. ( Base ` W ) /\ v =/= .0. ) ) |
11 |
5 1 6
|
lspsneq0 |
|- ( ( W e. LMod /\ v e. ( Base ` W ) ) -> ( ( ( LSpan ` W ) ` { v } ) = { .0. } <-> v = .0. ) ) |
12 |
3 11
|
sylan |
|- ( ( ph /\ v e. ( Base ` W ) ) -> ( ( ( LSpan ` W ) ` { v } ) = { .0. } <-> v = .0. ) ) |
13 |
12
|
biimpd |
|- ( ( ph /\ v e. ( Base ` W ) ) -> ( ( ( LSpan ` W ) ` { v } ) = { .0. } -> v = .0. ) ) |
14 |
13
|
necon3d |
|- ( ( ph /\ v e. ( Base ` W ) ) -> ( v =/= .0. -> ( ( LSpan ` W ) ` { v } ) =/= { .0. } ) ) |
15 |
14
|
expimpd |
|- ( ph -> ( ( v e. ( Base ` W ) /\ v =/= .0. ) -> ( ( LSpan ` W ) ` { v } ) =/= { .0. } ) ) |
16 |
10 15
|
syl5bi |
|- ( ph -> ( v e. ( ( Base ` W ) \ { .0. } ) -> ( ( LSpan ` W ) ` { v } ) =/= { .0. } ) ) |
17 |
|
neeq1 |
|- ( U = ( ( LSpan ` W ) ` { v } ) -> ( U =/= { .0. } <-> ( ( LSpan ` W ) ` { v } ) =/= { .0. } ) ) |
18 |
17
|
biimprcd |
|- ( ( ( LSpan ` W ) ` { v } ) =/= { .0. } -> ( U = ( ( LSpan ` W ) ` { v } ) -> U =/= { .0. } ) ) |
19 |
16 18
|
syl6 |
|- ( ph -> ( v e. ( ( Base ` W ) \ { .0. } ) -> ( U = ( ( LSpan ` W ) ` { v } ) -> U =/= { .0. } ) ) ) |
20 |
19
|
rexlimdv |
|- ( ph -> ( E. v e. ( ( Base ` W ) \ { .0. } ) U = ( ( LSpan ` W ) ` { v } ) -> U =/= { .0. } ) ) |
21 |
9 20
|
mpd |
|- ( ph -> U =/= { .0. } ) |