Metamath Proof Explorer


Theorem lsatn0

Description: A 1-dim subspace (atom) of a left module or left vector space is nonzero. ( atne0 analog.) (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatn0.o 0 ˙ = 0 W
lsatn0.a A = LSAtoms W
lsatn0.w φ W LMod
lsatn0.u φ U A
Assertion lsatn0 φ U 0 ˙

Proof

Step Hyp Ref Expression
1 lsatn0.o 0 ˙ = 0 W
2 lsatn0.a A = LSAtoms W
3 lsatn0.w φ W LMod
4 lsatn0.u φ U A
5 eqid Base W = Base W
6 eqid LSpan W = LSpan W
7 5 6 1 2 islsat W LMod U A v Base W 0 ˙ U = LSpan W v
8 3 7 syl φ U A v Base W 0 ˙ U = LSpan W v
9 4 8 mpbid φ v Base W 0 ˙ U = LSpan W v
10 eldifsn v Base W 0 ˙ v Base W v 0 ˙
11 5 1 6 lspsneq0 W LMod v Base W LSpan W v = 0 ˙ v = 0 ˙
12 3 11 sylan φ v Base W LSpan W v = 0 ˙ v = 0 ˙
13 12 biimpd φ v Base W LSpan W v = 0 ˙ v = 0 ˙
14 13 necon3d φ v Base W v 0 ˙ LSpan W v 0 ˙
15 14 expimpd φ v Base W v 0 ˙ LSpan W v 0 ˙
16 10 15 syl5bi φ v Base W 0 ˙ LSpan W v 0 ˙
17 neeq1 U = LSpan W v U 0 ˙ LSpan W v 0 ˙
18 17 biimprcd LSpan W v 0 ˙ U = LSpan W v U 0 ˙
19 16 18 syl6 φ v Base W 0 ˙ U = LSpan W v U 0 ˙
20 19 rexlimdv φ v Base W 0 ˙ U = LSpan W v U 0 ˙
21 9 20 mpd φ U 0 ˙