Metamath Proof Explorer


Theorem lspsneq0

Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspsneq0.v V = Base W
lspsneq0.z 0 ˙ = 0 W
lspsneq0.n N = LSpan W
Assertion lspsneq0 W LMod X V N X = 0 ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 lspsneq0.v V = Base W
2 lspsneq0.z 0 ˙ = 0 W
3 lspsneq0.n N = LSpan W
4 1 3 lspsnid W LMod X V X N X
5 eleq2 N X = 0 ˙ X N X X 0 ˙
6 4 5 syl5ibcom W LMod X V N X = 0 ˙ X 0 ˙
7 elsni X 0 ˙ X = 0 ˙
8 6 7 syl6 W LMod X V N X = 0 ˙ X = 0 ˙
9 2 3 lspsn0 W LMod N 0 ˙ = 0 ˙
10 9 adantr W LMod X V N 0 ˙ = 0 ˙
11 sneq X = 0 ˙ X = 0 ˙
12 11 fveqeq2d X = 0 ˙ N X = 0 ˙ N 0 ˙ = 0 ˙
13 10 12 syl5ibrcom W LMod X V X = 0 ˙ N X = 0 ˙
14 8 13 impbid W LMod X V N X = 0 ˙ X = 0 ˙