Metamath Proof Explorer


Theorem lspsneq0b

Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015)

Ref Expression
Hypotheses lspsneq0b.v V = Base W
lspsneq0b.o 0 ˙ = 0 W
lspsneq0b.n N = LSpan W
lspsneq0b.w φ W LMod
lspsneq0b.x φ X V
lspsneq0b.y φ Y V
lspsneq0b.e φ N X = N Y
Assertion lspsneq0b φ X = 0 ˙ Y = 0 ˙

Proof

Step Hyp Ref Expression
1 lspsneq0b.v V = Base W
2 lspsneq0b.o 0 ˙ = 0 W
3 lspsneq0b.n N = LSpan W
4 lspsneq0b.w φ W LMod
5 lspsneq0b.x φ X V
6 lspsneq0b.y φ Y V
7 lspsneq0b.e φ N X = N Y
8 7 adantr φ X = 0 ˙ N X = N Y
9 1 2 3 lspsneq0 W LMod X V N X = 0 ˙ X = 0 ˙
10 4 5 9 syl2anc φ N X = 0 ˙ X = 0 ˙
11 10 biimpar φ X = 0 ˙ N X = 0 ˙
12 8 11 eqtr3d φ X = 0 ˙ N Y = 0 ˙
13 1 2 3 lspsneq0 W LMod Y V N Y = 0 ˙ Y = 0 ˙
14 4 6 13 syl2anc φ N Y = 0 ˙ Y = 0 ˙
15 14 adantr φ X = 0 ˙ N Y = 0 ˙ Y = 0 ˙
16 12 15 mpbid φ X = 0 ˙ Y = 0 ˙
17 7 adantr φ Y = 0 ˙ N X = N Y
18 14 biimpar φ Y = 0 ˙ N Y = 0 ˙
19 17 18 eqtrd φ Y = 0 ˙ N X = 0 ˙
20 10 adantr φ Y = 0 ˙ N X = 0 ˙ X = 0 ˙
21 19 20 mpbid φ Y = 0 ˙ X = 0 ˙
22 16 21 impbida φ X = 0 ˙ Y = 0 ˙