| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsneq0b.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsneq0b.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspsneq0b.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspsneq0b.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lspsneq0b.x |
|- ( ph -> X e. V ) |
| 6 |
|
lspsneq0b.y |
|- ( ph -> Y e. V ) |
| 7 |
|
lspsneq0b.e |
|- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 9 |
1 2 3
|
lspsneq0 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
| 10 |
4 5 9
|
syl2anc |
|- ( ph -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
| 11 |
10
|
biimpar |
|- ( ( ph /\ X = .0. ) -> ( N ` { X } ) = { .0. } ) |
| 12 |
8 11
|
eqtr3d |
|- ( ( ph /\ X = .0. ) -> ( N ` { Y } ) = { .0. } ) |
| 13 |
1 2 3
|
lspsneq0 |
|- ( ( W e. LMod /\ Y e. V ) -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
| 14 |
4 6 13
|
syl2anc |
|- ( ph -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ X = .0. ) -> ( ( N ` { Y } ) = { .0. } <-> Y = .0. ) ) |
| 16 |
12 15
|
mpbid |
|- ( ( ph /\ X = .0. ) -> Y = .0. ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 18 |
14
|
biimpar |
|- ( ( ph /\ Y = .0. ) -> ( N ` { Y } ) = { .0. } ) |
| 19 |
17 18
|
eqtrd |
|- ( ( ph /\ Y = .0. ) -> ( N ` { X } ) = { .0. } ) |
| 20 |
10
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
| 21 |
19 20
|
mpbid |
|- ( ( ph /\ Y = .0. ) -> X = .0. ) |
| 22 |
16 21
|
impbida |
|- ( ph -> ( X = .0. <-> Y = .0. ) ) |