| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsneq0.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsneq0.z |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspsneq0.n |
|- N = ( LSpan ` W ) |
| 4 |
1 3
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 5 |
|
eleq2 |
|- ( ( N ` { X } ) = { .0. } -> ( X e. ( N ` { X } ) <-> X e. { .0. } ) ) |
| 6 |
4 5
|
syl5ibcom |
|- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } -> X e. { .0. } ) ) |
| 7 |
|
elsni |
|- ( X e. { .0. } -> X = .0. ) |
| 8 |
6 7
|
syl6 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } -> X = .0. ) ) |
| 9 |
2 3
|
lspsn0 |
|- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
| 10 |
9
|
adantr |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { .0. } ) = { .0. } ) |
| 11 |
|
sneq |
|- ( X = .0. -> { X } = { .0. } ) |
| 12 |
11
|
fveqeq2d |
|- ( X = .0. -> ( ( N ` { X } ) = { .0. } <-> ( N ` { .0. } ) = { .0. } ) ) |
| 13 |
10 12
|
syl5ibrcom |
|- ( ( W e. LMod /\ X e. V ) -> ( X = .0. -> ( N ` { X } ) = { .0. } ) ) |
| 14 |
8 13
|
impbid |
|- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |