Step |
Hyp |
Ref |
Expression |
1 |
|
lsatn0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsatn0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
lsatn0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
lsatn0.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
7 |
5 6 1 2
|
islsat |
⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
9 |
4 8
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
10 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ 0 ) ) |
11 |
5 1 6
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) = { 0 } ↔ 𝑣 = 0 ) ) |
12 |
3 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) = { 0 } ↔ 𝑣 = 0 ) ) |
13 |
12
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) = { 0 } → 𝑣 = 0 ) ) |
14 |
13
|
necon3d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑣 ≠ 0 → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ≠ { 0 } ) ) |
15 |
14
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ≠ { 0 } ) ) |
16 |
10 15
|
syl5bi |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ≠ { 0 } ) ) |
17 |
|
neeq1 |
⊢ ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑈 ≠ { 0 } ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ≠ { 0 } ) ) |
18 |
17
|
biimprcd |
⊢ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ≠ { 0 } → ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → 𝑈 ≠ { 0 } ) ) |
19 |
16 18
|
syl6 |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → 𝑈 ≠ { 0 } ) ) ) |
20 |
19
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → 𝑈 ≠ { 0 } ) ) |
21 |
9 20
|
mpd |
⊢ ( 𝜑 → 𝑈 ≠ { 0 } ) |