Step |
Hyp |
Ref |
Expression |
1 |
|
lsatspn0.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsatspn0.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lsatspn0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lsatspn0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
5 |
|
isateln0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
6 |
|
isateln0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) → 𝑊 ∈ LMod ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) |
9 |
3 4 7 8
|
lsatn0 |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ { 0 } ) |
10 |
|
sneq |
⊢ ( 𝑋 = 0 → { 𝑋 } = { 0 } ) |
11 |
10
|
fveq2d |
⊢ ( 𝑋 = 0 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 0 } ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 0 } ) ) |
13 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) ∧ 𝑋 = 0 ) → 𝑊 ∈ LMod ) |
14 |
3 2
|
lspsn0 |
⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
16 |
12 15
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
17 |
16
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) → ( 𝑋 = 0 → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |
18 |
17
|
necon3d |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) → ( ( 𝑁 ‘ { 𝑋 } ) ≠ { 0 } → 𝑋 ≠ 0 ) ) |
19 |
9 18
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) → 𝑋 ≠ 0 ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod ) |
21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
23 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
24 |
21 22 23
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
25 |
1 2 3 4 20 24
|
lsatlspsn |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) |
26 |
19 25
|
impbida |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ 𝑋 ≠ 0 ) ) |