Step |
Hyp |
Ref |
Expression |
1 |
|
lsator0sp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsator0sp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lsator0sp.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lsator0sp.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
5 |
|
isator0sp.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
6 |
|
isator0sp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
1 2 3 4 5 6
|
lsatspn0 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ 𝑋 ≠ 0 ) ) |
8 |
7
|
biimprd |
⊢ ( 𝜑 → ( 𝑋 ≠ 0 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) ) |
9 |
8
|
necon1bd |
⊢ ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 → 𝑋 = 0 ) ) |
10 |
1 3 2
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
11 |
5 6 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
12 |
9 11
|
sylibrd |
⊢ ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |
13 |
12
|
orrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ∨ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |