Metamath Proof Explorer


Theorem lsator0sp

Description: The span of a vector is either an atom or the zero subspace. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lsator0sp.v 𝑉 = ( Base ‘ 𝑊 )
lsator0sp.n 𝑁 = ( LSpan ‘ 𝑊 )
lsator0sp.o 0 = ( 0g𝑊 )
lsator0sp.a 𝐴 = ( LSAtoms ‘ 𝑊 )
isator0sp.w ( 𝜑𝑊 ∈ LMod )
isator0sp.x ( 𝜑𝑋𝑉 )
Assertion lsator0sp ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ∨ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) )

Proof

Step Hyp Ref Expression
1 lsator0sp.v 𝑉 = ( Base ‘ 𝑊 )
2 lsator0sp.n 𝑁 = ( LSpan ‘ 𝑊 )
3 lsator0sp.o 0 = ( 0g𝑊 )
4 lsator0sp.a 𝐴 = ( LSAtoms ‘ 𝑊 )
5 isator0sp.w ( 𝜑𝑊 ∈ LMod )
6 isator0sp.x ( 𝜑𝑋𝑉 )
7 1 2 3 4 5 6 lsatspn0 ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴𝑋0 ) )
8 7 biimprd ( 𝜑 → ( 𝑋0 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) )
9 8 necon1bd ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴𝑋 = 0 ) )
10 1 3 2 lspsneq0 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) )
11 5 6 10 syl2anc ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) )
12 9 11 sylibrd ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) )
13 12 orrd ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ∨ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) )