| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsator0sp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lsator0sp.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | lsator0sp.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | lsator0sp.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑊 ) | 
						
							| 5 |  | isator0sp.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 6 |  | isator0sp.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 7 | 1 2 3 4 5 6 | lsatspn0 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ∈  𝐴  ↔  𝑋  ≠   0  ) ) | 
						
							| 8 | 7 | biimprd | ⊢ ( 𝜑  →  ( 𝑋  ≠   0   →  ( 𝑁 ‘ { 𝑋 } )  ∈  𝐴 ) ) | 
						
							| 9 | 8 | necon1bd | ⊢ ( 𝜑  →  ( ¬  ( 𝑁 ‘ { 𝑋 } )  ∈  𝐴  →  𝑋  =   0  ) ) | 
						
							| 10 | 1 3 2 | lspsneq0 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  ↔  𝑋  =   0  ) ) | 
						
							| 11 | 5 6 10 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  ↔  𝑋  =   0  ) ) | 
						
							| 12 | 9 11 | sylibrd | ⊢ ( 𝜑  →  ( ¬  ( 𝑁 ‘ { 𝑋 } )  ∈  𝐴  →  ( 𝑁 ‘ { 𝑋 } )  =  {  0  } ) ) | 
						
							| 13 | 12 | orrd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ∈  𝐴  ∨  ( 𝑁 ‘ { 𝑋 } )  =  {  0  } ) ) |