Metamath Proof Explorer


Theorem lsatssn0

Description: A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015)

Ref Expression
Hypotheses lsatssn0.o 0 = ( 0g𝑊 )
lsatssn0.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatssn0.w ( 𝜑𝑊 ∈ LMod )
lsatssn0.q ( 𝜑𝑄𝐴 )
lsatssn0.u ( 𝜑𝑄𝑈 )
Assertion lsatssn0 ( 𝜑𝑈 ≠ { 0 } )

Proof

Step Hyp Ref Expression
1 lsatssn0.o 0 = ( 0g𝑊 )
2 lsatssn0.a 𝐴 = ( LSAtoms ‘ 𝑊 )
3 lsatssn0.w ( 𝜑𝑊 ∈ LMod )
4 lsatssn0.q ( 𝜑𝑄𝐴 )
5 lsatssn0.u ( 𝜑𝑄𝑈 )
6 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
7 6 2 3 4 lsatlssel ( 𝜑𝑄 ∈ ( LSubSp ‘ 𝑊 ) )
8 1 6 lss0ss ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) → { 0 } ⊆ 𝑄 )
9 3 7 8 syl2anc ( 𝜑 → { 0 } ⊆ 𝑄 )
10 1 2 3 4 lsatn0 ( 𝜑𝑄 ≠ { 0 } )
11 10 necomd ( 𝜑 → { 0 } ≠ 𝑄 )
12 df-pss ( { 0 } ⊊ 𝑄 ↔ ( { 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄 ) )
13 9 11 12 sylanbrc ( 𝜑 → { 0 } ⊊ 𝑄 )
14 13 5 psssstrd ( 𝜑 → { 0 } ⊊ 𝑈 )
15 14 pssned ( 𝜑 → { 0 } ≠ 𝑈 )
16 15 necomd ( 𝜑𝑈 ≠ { 0 } )