Step |
Hyp |
Ref |
Expression |
1 |
|
lsatssn0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsatssn0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
lsatssn0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
lsatssn0.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
5 |
|
lsatssn0.u |
⊢ ( 𝜑 → 𝑄 ⊆ 𝑈 ) |
6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
7 |
6 2 3 4
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) |
8 |
1 6
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) → { 0 } ⊆ 𝑄 ) |
9 |
3 7 8
|
syl2anc |
⊢ ( 𝜑 → { 0 } ⊆ 𝑄 ) |
10 |
1 2 3 4
|
lsatn0 |
⊢ ( 𝜑 → 𝑄 ≠ { 0 } ) |
11 |
10
|
necomd |
⊢ ( 𝜑 → { 0 } ≠ 𝑄 ) |
12 |
|
df-pss |
⊢ ( { 0 } ⊊ 𝑄 ↔ ( { 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄 ) ) |
13 |
9 11 12
|
sylanbrc |
⊢ ( 𝜑 → { 0 } ⊊ 𝑄 ) |
14 |
13 5
|
psssstrd |
⊢ ( 𝜑 → { 0 } ⊊ 𝑈 ) |
15 |
14
|
pssned |
⊢ ( 𝜑 → { 0 } ≠ 𝑈 ) |
16 |
15
|
necomd |
⊢ ( 𝜑 → 𝑈 ≠ { 0 } ) |