| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatssn0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lsatssn0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 3 |
|
lsatssn0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 4 |
|
lsatssn0.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 5 |
|
lsatssn0.u |
⊢ ( 𝜑 → 𝑄 ⊆ 𝑈 ) |
| 6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 7 |
6 2 3 4
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 8 |
1 6
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) → { 0 } ⊆ 𝑄 ) |
| 9 |
3 7 8
|
syl2anc |
⊢ ( 𝜑 → { 0 } ⊆ 𝑄 ) |
| 10 |
1 2 3 4
|
lsatn0 |
⊢ ( 𝜑 → 𝑄 ≠ { 0 } ) |
| 11 |
10
|
necomd |
⊢ ( 𝜑 → { 0 } ≠ 𝑄 ) |
| 12 |
|
df-pss |
⊢ ( { 0 } ⊊ 𝑄 ↔ ( { 0 } ⊆ 𝑄 ∧ { 0 } ≠ 𝑄 ) ) |
| 13 |
9 11 12
|
sylanbrc |
⊢ ( 𝜑 → { 0 } ⊊ 𝑄 ) |
| 14 |
13 5
|
psssstrd |
⊢ ( 𝜑 → { 0 } ⊊ 𝑈 ) |
| 15 |
14
|
pssned |
⊢ ( 𝜑 → { 0 } ≠ 𝑈 ) |
| 16 |
15
|
necomd |
⊢ ( 𝜑 → 𝑈 ≠ { 0 } ) |