Metamath Proof Explorer


Theorem lsatssn0

Description: A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015)

Ref Expression
Hypotheses lsatssn0.o 0 ˙ = 0 W
lsatssn0.a A = LSAtoms W
lsatssn0.w φ W LMod
lsatssn0.q φ Q A
lsatssn0.u φ Q U
Assertion lsatssn0 φ U 0 ˙

Proof

Step Hyp Ref Expression
1 lsatssn0.o 0 ˙ = 0 W
2 lsatssn0.a A = LSAtoms W
3 lsatssn0.w φ W LMod
4 lsatssn0.q φ Q A
5 lsatssn0.u φ Q U
6 eqid LSubSp W = LSubSp W
7 6 2 3 4 lsatlssel φ Q LSubSp W
8 1 6 lss0ss W LMod Q LSubSp W 0 ˙ Q
9 3 7 8 syl2anc φ 0 ˙ Q
10 1 2 3 4 lsatn0 φ Q 0 ˙
11 10 necomd φ 0 ˙ Q
12 df-pss 0 ˙ Q 0 ˙ Q 0 ˙ Q
13 9 11 12 sylanbrc φ 0 ˙ Q
14 13 5 psssstrd φ 0 ˙ U
15 14 pssned φ 0 ˙ U
16 15 necomd φ U 0 ˙