Metamath Proof Explorer


Theorem lsatcmp

Description: If two atoms are comparable, they are equal. ( atsseq analog.) TODO: can lspsncmp shorten this? (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatcmp.a A = LSAtoms W
lsatcmp.w φ W LVec
lsatcmp.t φ T A
lsatcmp.u φ U A
Assertion lsatcmp φ T U T = U

Proof

Step Hyp Ref Expression
1 lsatcmp.a A = LSAtoms W
2 lsatcmp.w φ W LVec
3 lsatcmp.t φ T A
4 lsatcmp.u φ U A
5 lveclmod W LVec W LMod
6 2 5 syl φ W LMod
7 eqid Base W = Base W
8 eqid LSpan W = LSpan W
9 eqid 0 W = 0 W
10 7 8 9 1 islsat W LMod U A v Base W 0 W U = LSpan W v
11 6 10 syl φ U A v Base W 0 W U = LSpan W v
12 4 11 mpbid φ v Base W 0 W U = LSpan W v
13 eldifsn v Base W 0 W v Base W v 0 W
14 9 1 6 3 lsatn0 φ T 0 W
15 14 ad2antrr φ v Base W v 0 W T LSpan W v T 0 W
16 2 ad2antrr φ v Base W v 0 W T LSpan W v W LVec
17 eqid LSubSp W = LSubSp W
18 17 1 6 3 lsatlssel φ T LSubSp W
19 18 ad2antrr φ v Base W v 0 W T LSpan W v T LSubSp W
20 simplrl φ v Base W v 0 W T LSpan W v v Base W
21 simpr φ v Base W v 0 W T LSpan W v T LSpan W v
22 7 9 17 8 lspsnat W LVec T LSubSp W v Base W T LSpan W v T = LSpan W v T = 0 W
23 16 19 20 21 22 syl31anc φ v Base W v 0 W T LSpan W v T = LSpan W v T = 0 W
24 23 ord φ v Base W v 0 W T LSpan W v ¬ T = LSpan W v T = 0 W
25 24 necon1ad φ v Base W v 0 W T LSpan W v T 0 W T = LSpan W v
26 15 25 mpd φ v Base W v 0 W T LSpan W v T = LSpan W v
27 26 ex φ v Base W v 0 W T LSpan W v T = LSpan W v
28 eqimss T = LSpan W v T LSpan W v
29 27 28 impbid1 φ v Base W v 0 W T LSpan W v T = LSpan W v
30 29 ex φ v Base W v 0 W T LSpan W v T = LSpan W v
31 13 30 syl5bi φ v Base W 0 W T LSpan W v T = LSpan W v
32 sseq2 U = LSpan W v T U T LSpan W v
33 eqeq2 U = LSpan W v T = U T = LSpan W v
34 32 33 bibi12d U = LSpan W v T U T = U T LSpan W v T = LSpan W v
35 34 biimprcd T LSpan W v T = LSpan W v U = LSpan W v T U T = U
36 31 35 syl6 φ v Base W 0 W U = LSpan W v T U T = U
37 36 rexlimdv φ v Base W 0 W U = LSpan W v T U T = U
38 12 37 mpd φ T U T = U