Description: If two atoms are comparable, they are equal. ( atsseq analog.) TODO: can lspsncmp shorten this? (Contributed by NM, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsatcmp.a | |
|
lsatcmp.w | |
||
lsatcmp.t | |
||
lsatcmp.u | |
||
Assertion | lsatcmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcmp.a | |
|
2 | lsatcmp.w | |
|
3 | lsatcmp.t | |
|
4 | lsatcmp.u | |
|
5 | lveclmod | |
|
6 | 2 5 | syl | |
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 7 8 9 1 | islsat | |
11 | 6 10 | syl | |
12 | 4 11 | mpbid | |
13 | eldifsn | |
|
14 | 9 1 6 3 | lsatn0 | |
15 | 14 | ad2antrr | |
16 | 2 | ad2antrr | |
17 | eqid | |
|
18 | 17 1 6 3 | lsatlssel | |
19 | 18 | ad2antrr | |
20 | simplrl | |
|
21 | simpr | |
|
22 | 7 9 17 8 | lspsnat | |
23 | 16 19 20 21 22 | syl31anc | |
24 | 23 | ord | |
25 | 24 | necon1ad | |
26 | 15 25 | mpd | |
27 | 26 | ex | |
28 | eqimss | |
|
29 | 27 28 | impbid1 | |
30 | 29 | ex | |
31 | 13 30 | biimtrid | |
32 | sseq2 | |
|
33 | eqeq2 | |
|
34 | 32 33 | bibi12d | |
35 | 34 | biimprcd | |
36 | 31 35 | syl6 | |
37 | 36 | rexlimdv | |
38 | 12 37 | mpd | |