Metamath Proof Explorer


Theorem lsatcmp

Description: If two atoms are comparable, they are equal. ( atsseq analog.) TODO: can lspsncmp shorten this? (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatcmp.a A=LSAtomsW
lsatcmp.w φWLVec
lsatcmp.t φTA
lsatcmp.u φUA
Assertion lsatcmp φTUT=U

Proof

Step Hyp Ref Expression
1 lsatcmp.a A=LSAtomsW
2 lsatcmp.w φWLVec
3 lsatcmp.t φTA
4 lsatcmp.u φUA
5 lveclmod WLVecWLMod
6 2 5 syl φWLMod
7 eqid BaseW=BaseW
8 eqid LSpanW=LSpanW
9 eqid 0W=0W
10 7 8 9 1 islsat WLModUAvBaseW0WU=LSpanWv
11 6 10 syl φUAvBaseW0WU=LSpanWv
12 4 11 mpbid φvBaseW0WU=LSpanWv
13 eldifsn vBaseW0WvBaseWv0W
14 9 1 6 3 lsatn0 φT0W
15 14 ad2antrr φvBaseWv0WTLSpanWvT0W
16 2 ad2antrr φvBaseWv0WTLSpanWvWLVec
17 eqid LSubSpW=LSubSpW
18 17 1 6 3 lsatlssel φTLSubSpW
19 18 ad2antrr φvBaseWv0WTLSpanWvTLSubSpW
20 simplrl φvBaseWv0WTLSpanWvvBaseW
21 simpr φvBaseWv0WTLSpanWvTLSpanWv
22 7 9 17 8 lspsnat WLVecTLSubSpWvBaseWTLSpanWvT=LSpanWvT=0W
23 16 19 20 21 22 syl31anc φvBaseWv0WTLSpanWvT=LSpanWvT=0W
24 23 ord φvBaseWv0WTLSpanWv¬T=LSpanWvT=0W
25 24 necon1ad φvBaseWv0WTLSpanWvT0WT=LSpanWv
26 15 25 mpd φvBaseWv0WTLSpanWvT=LSpanWv
27 26 ex φvBaseWv0WTLSpanWvT=LSpanWv
28 eqimss T=LSpanWvTLSpanWv
29 27 28 impbid1 φvBaseWv0WTLSpanWvT=LSpanWv
30 29 ex φvBaseWv0WTLSpanWvT=LSpanWv
31 13 30 biimtrid φvBaseW0WTLSpanWvT=LSpanWv
32 sseq2 U=LSpanWvTUTLSpanWv
33 eqeq2 U=LSpanWvT=UT=LSpanWv
34 32 33 bibi12d U=LSpanWvTUT=UTLSpanWvT=LSpanWv
35 34 biimprcd TLSpanWvT=LSpanWvU=LSpanWvTUT=U
36 31 35 syl6 φvBaseW0WU=LSpanWvTUT=U
37 36 rexlimdv φvBaseW0WU=LSpanWvTUT=U
38 12 37 mpd φTUT=U