Metamath Proof Explorer


Theorem lsatcmp2

Description: If an atom is included in at-most an atom, they are equal. More general version of lsatcmp . TODO: can lspsncmp shorten this? (Contributed by NM, 3-Feb-2015)

Ref Expression
Hypotheses lsatcmp2.o 0˙=0W
lsatcmp2.a A=LSAtomsW
lsatcmp2.w φWLVec
lsatcmp2.t φTA
lsatcmp2.u φUAU=0˙
Assertion lsatcmp2 φTUT=U

Proof

Step Hyp Ref Expression
1 lsatcmp2.o 0˙=0W
2 lsatcmp2.a A=LSAtomsW
3 lsatcmp2.w φWLVec
4 lsatcmp2.t φTA
5 lsatcmp2.u φUAU=0˙
6 simpr φTUTU
7 3 adantr φTUWLVec
8 4 adantr φTUTA
9 lveclmod WLVecWLMod
10 3 9 syl φWLMod
11 10 adantr φTUWLMod
12 1 2 11 8 6 lsatssn0 φTUU0˙
13 5 ord φ¬UAU=0˙
14 13 necon1ad φU0˙UA
15 14 adantr φTUU0˙UA
16 12 15 mpd φTUUA
17 2 7 8 16 lsatcmp φTUTUT=U
18 6 17 mpbid φTUT=U
19 18 ex φTUT=U
20 eqimss T=UTU
21 19 20 impbid1 φTUT=U