Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcmp2.o |
|- .0. = ( 0g ` W ) |
2 |
|
lsatcmp2.a |
|- A = ( LSAtoms ` W ) |
3 |
|
lsatcmp2.w |
|- ( ph -> W e. LVec ) |
4 |
|
lsatcmp2.t |
|- ( ph -> T e. A ) |
5 |
|
lsatcmp2.u |
|- ( ph -> ( U e. A \/ U = { .0. } ) ) |
6 |
|
simpr |
|- ( ( ph /\ T C_ U ) -> T C_ U ) |
7 |
3
|
adantr |
|- ( ( ph /\ T C_ U ) -> W e. LVec ) |
8 |
4
|
adantr |
|- ( ( ph /\ T C_ U ) -> T e. A ) |
9 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
10 |
3 9
|
syl |
|- ( ph -> W e. LMod ) |
11 |
10
|
adantr |
|- ( ( ph /\ T C_ U ) -> W e. LMod ) |
12 |
1 2 11 8 6
|
lsatssn0 |
|- ( ( ph /\ T C_ U ) -> U =/= { .0. } ) |
13 |
5
|
ord |
|- ( ph -> ( -. U e. A -> U = { .0. } ) ) |
14 |
13
|
necon1ad |
|- ( ph -> ( U =/= { .0. } -> U e. A ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ T C_ U ) -> ( U =/= { .0. } -> U e. A ) ) |
16 |
12 15
|
mpd |
|- ( ( ph /\ T C_ U ) -> U e. A ) |
17 |
2 7 8 16
|
lsatcmp |
|- ( ( ph /\ T C_ U ) -> ( T C_ U <-> T = U ) ) |
18 |
6 17
|
mpbid |
|- ( ( ph /\ T C_ U ) -> T = U ) |
19 |
18
|
ex |
|- ( ph -> ( T C_ U -> T = U ) ) |
20 |
|
eqimss |
|- ( T = U -> T C_ U ) |
21 |
19 20
|
impbid1 |
|- ( ph -> ( T C_ U <-> T = U ) ) |