Metamath Proof Explorer


Theorem lsatcmp2

Description: If an atom is included in at-most an atom, they are equal. More general version of lsatcmp . TODO: can lspsncmp shorten this? (Contributed by NM, 3-Feb-2015)

Ref Expression
Hypotheses lsatcmp2.o
|- .0. = ( 0g ` W )
lsatcmp2.a
|- A = ( LSAtoms ` W )
lsatcmp2.w
|- ( ph -> W e. LVec )
lsatcmp2.t
|- ( ph -> T e. A )
lsatcmp2.u
|- ( ph -> ( U e. A \/ U = { .0. } ) )
Assertion lsatcmp2
|- ( ph -> ( T C_ U <-> T = U ) )

Proof

Step Hyp Ref Expression
1 lsatcmp2.o
 |-  .0. = ( 0g ` W )
2 lsatcmp2.a
 |-  A = ( LSAtoms ` W )
3 lsatcmp2.w
 |-  ( ph -> W e. LVec )
4 lsatcmp2.t
 |-  ( ph -> T e. A )
5 lsatcmp2.u
 |-  ( ph -> ( U e. A \/ U = { .0. } ) )
6 simpr
 |-  ( ( ph /\ T C_ U ) -> T C_ U )
7 3 adantr
 |-  ( ( ph /\ T C_ U ) -> W e. LVec )
8 4 adantr
 |-  ( ( ph /\ T C_ U ) -> T e. A )
9 lveclmod
 |-  ( W e. LVec -> W e. LMod )
10 3 9 syl
 |-  ( ph -> W e. LMod )
11 10 adantr
 |-  ( ( ph /\ T C_ U ) -> W e. LMod )
12 1 2 11 8 6 lsatssn0
 |-  ( ( ph /\ T C_ U ) -> U =/= { .0. } )
13 5 ord
 |-  ( ph -> ( -. U e. A -> U = { .0. } ) )
14 13 necon1ad
 |-  ( ph -> ( U =/= { .0. } -> U e. A ) )
15 14 adantr
 |-  ( ( ph /\ T C_ U ) -> ( U =/= { .0. } -> U e. A ) )
16 12 15 mpd
 |-  ( ( ph /\ T C_ U ) -> U e. A )
17 2 7 8 16 lsatcmp
 |-  ( ( ph /\ T C_ U ) -> ( T C_ U <-> T = U ) )
18 6 17 mpbid
 |-  ( ( ph /\ T C_ U ) -> T = U )
19 18 ex
 |-  ( ph -> ( T C_ U -> T = U ) )
20 eqimss
 |-  ( T = U -> T C_ U )
21 19 20 impbid1
 |-  ( ph -> ( T C_ U <-> T = U ) )