| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcmp2.o |
|- .0. = ( 0g ` W ) |
| 2 |
|
lsatcmp2.a |
|- A = ( LSAtoms ` W ) |
| 3 |
|
lsatcmp2.w |
|- ( ph -> W e. LVec ) |
| 4 |
|
lsatcmp2.t |
|- ( ph -> T e. A ) |
| 5 |
|
lsatcmp2.u |
|- ( ph -> ( U e. A \/ U = { .0. } ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ T C_ U ) -> T C_ U ) |
| 7 |
3
|
adantr |
|- ( ( ph /\ T C_ U ) -> W e. LVec ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ T C_ U ) -> T e. A ) |
| 9 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 10 |
3 9
|
syl |
|- ( ph -> W e. LMod ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ T C_ U ) -> W e. LMod ) |
| 12 |
1 2 11 8 6
|
lsatssn0 |
|- ( ( ph /\ T C_ U ) -> U =/= { .0. } ) |
| 13 |
5
|
ord |
|- ( ph -> ( -. U e. A -> U = { .0. } ) ) |
| 14 |
13
|
necon1ad |
|- ( ph -> ( U =/= { .0. } -> U e. A ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ T C_ U ) -> ( U =/= { .0. } -> U e. A ) ) |
| 16 |
12 15
|
mpd |
|- ( ( ph /\ T C_ U ) -> U e. A ) |
| 17 |
2 7 8 16
|
lsatcmp |
|- ( ( ph /\ T C_ U ) -> ( T C_ U <-> T = U ) ) |
| 18 |
6 17
|
mpbid |
|- ( ( ph /\ T C_ U ) -> T = U ) |
| 19 |
18
|
ex |
|- ( ph -> ( T C_ U -> T = U ) ) |
| 20 |
|
eqimss |
|- ( T = U -> T C_ U ) |
| 21 |
19 20
|
impbid1 |
|- ( ph -> ( T C_ U <-> T = U ) ) |