Step |
Hyp |
Ref |
Expression |
1 |
|
lspsncmp.v |
|- V = ( Base ` W ) |
2 |
|
lspsncmp.o |
|- .0. = ( 0g ` W ) |
3 |
|
lspsncmp.n |
|- N = ( LSpan ` W ) |
4 |
|
lspsncmp.w |
|- ( ph -> W e. LVec ) |
5 |
|
lspsncmp.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
6 |
|
lspsncmp.y |
|- ( ph -> Y e. V ) |
7 |
4
|
adantr |
|- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> W e. LVec ) |
8 |
6
|
adantr |
|- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> Y e. V ) |
9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
11 |
4 10
|
syl |
|- ( ph -> W e. LMod ) |
12 |
1 9 3
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
13 |
11 6 12
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
14 |
5
|
eldifad |
|- ( ph -> X e. V ) |
15 |
1 9 3 11 13 14
|
lspsnel5 |
|- ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
16 |
15
|
biimpar |
|- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> X e. ( N ` { Y } ) ) |
17 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
18 |
5 17
|
syl |
|- ( ph -> X =/= .0. ) |
19 |
18
|
adantr |
|- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> X =/= .0. ) |
20 |
1 2 3 7 8 16 19
|
lspsneleq |
|- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
21 |
20
|
ex |
|- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
22 |
|
eqimss |
|- ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y } ) ) |
23 |
21 22
|
impbid1 |
|- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |