Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnne1.v |
|- V = ( Base ` W ) |
2 |
|
lspsnne1.o |
|- .0. = ( 0g ` W ) |
3 |
|
lspsnne1.n |
|- N = ( LSpan ` W ) |
4 |
|
lspsnne1.w |
|- ( ph -> W e. LVec ) |
5 |
|
lspsnne1.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
6 |
|
lspsnne1.y |
|- ( ph -> Y e. V ) |
7 |
|
lspsnne1.e |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
8 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
9 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
10 |
4 9
|
syl |
|- ( ph -> W e. LMod ) |
11 |
1 8 3
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
12 |
10 6 11
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
13 |
5
|
eldifad |
|- ( ph -> X e. V ) |
14 |
1 8 3 10 12 13
|
lspsnel5 |
|- ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
15 |
14
|
notbid |
|- ( ph -> ( -. X e. ( N ` { Y } ) <-> -. ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
16 |
1 2 3 4 5 6
|
lspsncmp |
|- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |
17 |
16
|
necon3bbid |
|- ( ph -> ( -. ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
18 |
15 17
|
bitrd |
|- ( ph -> ( -. X e. ( N ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
19 |
7 18
|
mpbird |
|- ( ph -> -. X e. ( N ` { Y } ) ) |