Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnne1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspsnne1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lspsnne1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspsnne1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspsnne1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
6 |
|
lspsnne1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
lspsnne1.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
11 |
1 8 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
12 |
10 6 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
13 |
5
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
14 |
1 8 3 10 12 13
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
15 |
14
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
16 |
1 2 3 4 5 6
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
17 |
16
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
18 |
15 17
|
bitrd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
19 |
7 18
|
mpbird |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |