| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnne1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsnne1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspsnne1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspsnne1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lspsnne1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 6 |
|
lspsnne1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
lspsnne1.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 11 |
1 8 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 |
10 6 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 13 |
5
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 14 |
1 8 3 10 12 13
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 15 |
14
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 16 |
1 2 3 4 5 6
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 17 |
16
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 18 |
15 17
|
bitrd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 19 |
7 18
|
mpbird |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |