| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnne2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsnne2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lspsnne2.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 4 |
|
lspsnne2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 5 |
|
lspsnne2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 6 |
|
lspsnne2.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 7 |
|
eqimss |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
| 8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 9 |
1 8 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 |
3 5 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 |
1 8 2 3 10 4
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 12 |
7 11
|
imbitrrid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 13 |
12
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 14 |
6 13
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |