Metamath Proof Explorer


Theorem lspsnne2

Description: Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspsnne2.v V=BaseW
lspsnne2.n N=LSpanW
lspsnne2.w φWLMod
lspsnne2.x φXV
lspsnne2.y φYV
lspsnne2.e φ¬XNY
Assertion lspsnne2 φNXNY

Proof

Step Hyp Ref Expression
1 lspsnne2.v V=BaseW
2 lspsnne2.n N=LSpanW
3 lspsnne2.w φWLMod
4 lspsnne2.x φXV
5 lspsnne2.y φYV
6 lspsnne2.e φ¬XNY
7 eqimss NX=NYNXNY
8 eqid LSubSpW=LSubSpW
9 1 8 2 lspsncl WLModYVNYLSubSpW
10 3 5 9 syl2anc φNYLSubSpW
11 1 8 2 3 10 4 lspsnel5 φXNYNXNY
12 7 11 imbitrrid φNX=NYXNY
13 12 necon3bd φ¬XNYNXNY
14 6 13 mpd φNXNY