| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnnecom.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsnnecom.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 3 |  | lspsnnecom.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspsnnecom.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 5 |  | lspsnnecom.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | lspsnnecom.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 7 |  | lspsnnecom.e | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 8 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 10 | 6 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 11 | 1 3 9 5 10 7 | lspsnne2 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 12 | 11 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 13 | 1 2 3 4 6 5 12 | lspsnne1 | ⊢ ( 𝜑  →  ¬  𝑌  ∈  ( 𝑁 ‘ { 𝑋 } ) ) |