| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnnecom.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspsnnecom.o |  |-  .0. = ( 0g ` W ) | 
						
							| 3 |  | lspsnnecom.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 |  | lspsnnecom.w |  |-  ( ph -> W e. LVec ) | 
						
							| 5 |  | lspsnnecom.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | lspsnnecom.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 7 |  | lspsnnecom.e |  |-  ( ph -> -. X e. ( N ` { Y } ) ) | 
						
							| 8 |  | lveclmod |  |-  ( W e. LVec -> W e. LMod ) | 
						
							| 9 | 4 8 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 10 | 6 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 11 | 1 3 9 5 10 7 | lspsnne2 |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 12 | 11 | necomd |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { X } ) ) | 
						
							| 13 | 1 2 3 4 6 5 12 | lspsnne1 |  |-  ( ph -> -. Y e. ( N ` { X } ) ) |