| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsncmp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsncmp.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspsncmp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspsncmp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lspsncmp.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 6 |
|
lspsncmp.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
| 8 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
1 9 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 13 |
11 6 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 |
5
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 15 |
1 9 3 11 13 14
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 16 |
15
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 17 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
| 18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ≠ 0 ) |
| 20 |
1 2 3 7 8 16 19
|
lspsneleq |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 21 |
20
|
ex |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 22 |
|
eqimss |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
| 23 |
21 22
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |