Step |
Hyp |
Ref |
Expression |
1 |
|
lspsncmp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspsncmp.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lspsncmp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspsncmp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspsncmp.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
6 |
|
lspsncmp.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
8 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
12 |
1 9 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
13 |
11 6 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
14 |
5
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
15 |
1 9 3 11 13 14
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
16 |
15
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ≠ 0 ) |
20 |
1 2 3 7 8 16 19
|
lspsneleq |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
21 |
20
|
ex |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
22 |
|
eqimss |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
23 |
21 22
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |