| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsneleq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsneleq.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspsneleq.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspsneleq.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lspsneleq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
lspsneleq.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 7 |
|
lspsneleq.z |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 10 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 13 |
10 11 1 12 3
|
ellspsn |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 14 |
9 5 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
| 16 |
15
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → { 𝑌 } = { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) |
| 17 |
16
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) ) |
| 18 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑊 ∈ LVec ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑌 ≠ 0 ) |
| 21 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
| 22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 |
22
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 25 |
1 10 12 24 2
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 26 |
9 5 25
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 28 |
21 23 27
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = 0 ) |
| 29 |
28
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑌 = 0 ) ) |
| 30 |
29
|
necon3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑌 ≠ 0 → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 31 |
20 30
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑋 ∈ 𝑉 ) |
| 33 |
1 10 12 11 24 3
|
lspsnvs |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 34 |
18 19 31 32 33
|
syl121anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 35 |
17 34
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 36 |
35
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 37 |
14 36
|
sylbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 38 |
6 37
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |