Description: Membership relation that implies equality of spans. ( spansneleq analog.) (Contributed by NM, 4-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspsneleq.v | |
|
lspsneleq.o | |
||
lspsneleq.n | |
||
lspsneleq.w | |
||
lspsneleq.x | |
||
lspsneleq.y | |
||
lspsneleq.z | |
||
Assertion | lspsneleq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsneleq.v | |
|
2 | lspsneleq.o | |
|
3 | lspsneleq.n | |
|
4 | lspsneleq.w | |
|
5 | lspsneleq.x | |
|
6 | lspsneleq.y | |
|
7 | lspsneleq.z | |
|
8 | lveclmod | |
|
9 | 4 8 | syl | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 10 11 1 12 3 | lspsnel | |
14 | 9 5 13 | syl2anc | |
15 | simpr | |
|
16 | 15 | sneqd | |
17 | 16 | fveq2d | |
18 | 4 | ad2antrr | |
19 | simplr | |
|
20 | 7 | ad2antrr | |
21 | simplr | |
|
22 | simpr | |
|
23 | 22 | oveq1d | |
24 | eqid | |
|
25 | 1 10 12 24 2 | lmod0vs | |
26 | 9 5 25 | syl2anc | |
27 | 26 | ad3antrrr | |
28 | 21 23 27 | 3eqtrd | |
29 | 28 | ex | |
30 | 29 | necon3d | |
31 | 20 30 | mpd | |
32 | 5 | ad2antrr | |
33 | 1 10 12 11 24 3 | lspsnvs | |
34 | 18 19 31 32 33 | syl121anc | |
35 | 17 34 | eqtrd | |
36 | 35 | rexlimdva2 | |
37 | 14 36 | sylbid | |
38 | 6 37 | mpd | |