Metamath Proof Explorer


Theorem lspsneleq

Description: Membership relation that implies equality of spans. ( spansneleq analog.) (Contributed by NM, 4-Jul-2014)

Ref Expression
Hypotheses lspsneleq.v V=BaseW
lspsneleq.o 0˙=0W
lspsneleq.n N=LSpanW
lspsneleq.w φWLVec
lspsneleq.x φXV
lspsneleq.y φYNX
lspsneleq.z φY0˙
Assertion lspsneleq φNY=NX

Proof

Step Hyp Ref Expression
1 lspsneleq.v V=BaseW
2 lspsneleq.o 0˙=0W
3 lspsneleq.n N=LSpanW
4 lspsneleq.w φWLVec
5 lspsneleq.x φXV
6 lspsneleq.y φYNX
7 lspsneleq.z φY0˙
8 lveclmod WLVecWLMod
9 4 8 syl φWLMod
10 eqid ScalarW=ScalarW
11 eqid BaseScalarW=BaseScalarW
12 eqid W=W
13 10 11 1 12 3 lspsnel WLModXVYNXkBaseScalarWY=kWX
14 9 5 13 syl2anc φYNXkBaseScalarWY=kWX
15 simpr φkBaseScalarWY=kWXY=kWX
16 15 sneqd φkBaseScalarWY=kWXY=kWX
17 16 fveq2d φkBaseScalarWY=kWXNY=NkWX
18 4 ad2antrr φkBaseScalarWY=kWXWLVec
19 simplr φkBaseScalarWY=kWXkBaseScalarW
20 7 ad2antrr φkBaseScalarWY=kWXY0˙
21 simplr φkBaseScalarWY=kWXk=0ScalarWY=kWX
22 simpr φkBaseScalarWY=kWXk=0ScalarWk=0ScalarW
23 22 oveq1d φkBaseScalarWY=kWXk=0ScalarWkWX=0ScalarWWX
24 eqid 0ScalarW=0ScalarW
25 1 10 12 24 2 lmod0vs WLModXV0ScalarWWX=0˙
26 9 5 25 syl2anc φ0ScalarWWX=0˙
27 26 ad3antrrr φkBaseScalarWY=kWXk=0ScalarW0ScalarWWX=0˙
28 21 23 27 3eqtrd φkBaseScalarWY=kWXk=0ScalarWY=0˙
29 28 ex φkBaseScalarWY=kWXk=0ScalarWY=0˙
30 29 necon3d φkBaseScalarWY=kWXY0˙k0ScalarW
31 20 30 mpd φkBaseScalarWY=kWXk0ScalarW
32 5 ad2antrr φkBaseScalarWY=kWXXV
33 1 10 12 11 24 3 lspsnvs WLVeckBaseScalarWk0ScalarWXVNkWX=NX
34 18 19 31 32 33 syl121anc φkBaseScalarWY=kWXNkWX=NX
35 17 34 eqtrd φkBaseScalarWY=kWXNY=NX
36 35 rexlimdva2 φkBaseScalarWY=kWXNY=NX
37 14 36 sylbid φYNXNY=NX
38 6 37 mpd φNY=NX