Description: Membership relation that implies equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | spansneleq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elspansn | |
|
2 | 1 | adantr | |
3 | sneq | |
|
4 | 3 | fveq2d | |
5 | 4 | ad2antll | |
6 | oveq1 | |
|
7 | ax-hvmul0 | |
|
8 | 6 7 | sylan9eqr | |
9 | 8 | ex | |
10 | eqeq1 | |
|
11 | 10 | biimprd | |
12 | 9 11 | sylan9 | |
13 | 12 | necon3d | |
14 | 13 | ex | |
15 | 14 | com23 | |
16 | 15 | impd | |
17 | 16 | adantr | |
18 | spansncol | |
|
19 | 18 | 3expia | |
20 | 17 19 | syld | |
21 | 20 | exp4b | |
22 | 21 | com23 | |
23 | 22 | imp43 | |
24 | 5 23 | eqtrd | |
25 | 24 | rexlimdvaa | |
26 | 2 25 | sylbid | |