Metamath Proof Explorer


Theorem spansnss

Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnss ASBAspanBA

Proof

Step Hyp Ref Expression
1 shel ASBAB
2 elspansn BxspanByx=yB
3 1 2 syl ASBAxspanByx=yB
4 shmulcl ASyBAyBA
5 eleq1a yBAx=yBxA
6 4 5 syl ASyBAx=yBxA
7 6 3exp ASyBAx=yBxA
8 7 com23 ASBAyx=yBxA
9 8 imp ASBAyx=yBxA
10 9 rexlimdv ASBAyx=yBxA
11 3 10 sylbid ASBAxspanBxA
12 11 ssrdv ASBAspanBA