Metamath Proof Explorer


Theorem lspsnvs

Description: A nonzero scalar product does not change the span of a singleton. ( spansncol analog.) (Contributed by NM, 23-Apr-2014)

Ref Expression
Hypotheses lspsnvs.v V=BaseW
lspsnvs.f F=ScalarW
lspsnvs.t ·˙=W
lspsnvs.k K=BaseF
lspsnvs.o 0˙=0F
lspsnvs.n N=LSpanW
Assertion lspsnvs WLVecRKR0˙XVNR·˙X=NX

Proof

Step Hyp Ref Expression
1 lspsnvs.v V=BaseW
2 lspsnvs.f F=ScalarW
3 lspsnvs.t ·˙=W
4 lspsnvs.k K=BaseF
5 lspsnvs.o 0˙=0F
6 lspsnvs.n N=LSpanW
7 lveclmod WLVecWLMod
8 7 3ad2ant1 WLVecRKR0˙XVWLMod
9 simp2l WLVecRKR0˙XVRK
10 simp3 WLVecRKR0˙XVXV
11 2 4 1 3 6 lspsnvsi WLModRKXVNR·˙XNX
12 8 9 10 11 syl3anc WLVecRKR0˙XVNR·˙XNX
13 2 lvecdrng WLVecFDivRing
14 13 3ad2ant1 WLVecRKR0˙XVFDivRing
15 simp2r WLVecRKR0˙XVR0˙
16 eqid F=F
17 eqid 1F=1F
18 eqid invrF=invrF
19 4 5 16 17 18 drnginvrl FDivRingRKR0˙invrFRFR=1F
20 14 9 15 19 syl3anc WLVecRKR0˙XVinvrFRFR=1F
21 20 oveq1d WLVecRKR0˙XVinvrFRFR·˙X=1F·˙X
22 4 5 18 drnginvrcl FDivRingRKR0˙invrFRK
23 14 9 15 22 syl3anc WLVecRKR0˙XVinvrFRK
24 1 2 3 4 16 lmodvsass WLModinvrFRKRKXVinvrFRFR·˙X=invrFR·˙R·˙X
25 8 23 9 10 24 syl13anc WLVecRKR0˙XVinvrFRFR·˙X=invrFR·˙R·˙X
26 1 2 3 17 lmodvs1 WLModXV1F·˙X=X
27 8 10 26 syl2anc WLVecRKR0˙XV1F·˙X=X
28 21 25 27 3eqtr3d WLVecRKR0˙XVinvrFR·˙R·˙X=X
29 28 sneqd WLVecRKR0˙XVinvrFR·˙R·˙X=X
30 29 fveq2d WLVecRKR0˙XVNinvrFR·˙R·˙X=NX
31 1 2 3 4 lmodvscl WLModRKXVR·˙XV
32 8 9 10 31 syl3anc WLVecRKR0˙XVR·˙XV
33 2 4 1 3 6 lspsnvsi WLModinvrFRKR·˙XVNinvrFR·˙R·˙XNR·˙X
34 8 23 32 33 syl3anc WLVecRKR0˙XVNinvrFR·˙R·˙XNR·˙X
35 30 34 eqsstrrd WLVecRKR0˙XVNXNR·˙X
36 12 35 eqssd WLVecRKR0˙XVNR·˙X=NX