Metamath Proof Explorer


Theorem lspsnne1

Description: Two ways to express that vectors have different spans. (Contributed by NM, 28-May-2015)

Ref Expression
Hypotheses lspsnne1.v V = Base W
lspsnne1.o 0 ˙ = 0 W
lspsnne1.n N = LSpan W
lspsnne1.w φ W LVec
lspsnne1.x φ X V 0 ˙
lspsnne1.y φ Y V
lspsnne1.e φ N X N Y
Assertion lspsnne1 φ ¬ X N Y

Proof

Step Hyp Ref Expression
1 lspsnne1.v V = Base W
2 lspsnne1.o 0 ˙ = 0 W
3 lspsnne1.n N = LSpan W
4 lspsnne1.w φ W LVec
5 lspsnne1.x φ X V 0 ˙
6 lspsnne1.y φ Y V
7 lspsnne1.e φ N X N Y
8 eqid LSubSp W = LSubSp W
9 lveclmod W LVec W LMod
10 4 9 syl φ W LMod
11 1 8 3 lspsncl W LMod Y V N Y LSubSp W
12 10 6 11 syl2anc φ N Y LSubSp W
13 5 eldifad φ X V
14 1 8 3 10 12 13 lspsnel5 φ X N Y N X N Y
15 14 notbid φ ¬ X N Y ¬ N X N Y
16 1 2 3 4 5 6 lspsncmp φ N X N Y N X = N Y
17 16 necon3bbid φ ¬ N X N Y N X N Y
18 15 17 bitrd φ ¬ X N Y N X N Y
19 7 18 mpbird φ ¬ X N Y