Step |
Hyp |
Ref |
Expression |
1 |
|
lsatel.o |
|- .0. = ( 0g ` W ) |
2 |
|
lsatel.n |
|- N = ( LSpan ` W ) |
3 |
|
lsatel.a |
|- A = ( LSAtoms ` W ) |
4 |
|
lsatel.w |
|- ( ph -> W e. LVec ) |
5 |
|
lsatel.u |
|- ( ph -> U e. A ) |
6 |
|
lsatel.x |
|- ( ph -> X e. U ) |
7 |
|
lsatel.e |
|- ( ph -> X =/= .0. ) |
8 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
9 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
10 |
4 9
|
syl |
|- ( ph -> W e. LMod ) |
11 |
8 3 10 5
|
lsatlssel |
|- ( ph -> U e. ( LSubSp ` W ) ) |
12 |
8 2 10 11 6
|
lspsnel5a |
|- ( ph -> ( N ` { X } ) C_ U ) |
13 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
14 |
13 8
|
lssel |
|- ( ( U e. ( LSubSp ` W ) /\ X e. U ) -> X e. ( Base ` W ) ) |
15 |
11 6 14
|
syl2anc |
|- ( ph -> X e. ( Base ` W ) ) |
16 |
13 2 1 3
|
lsatlspsn2 |
|- ( ( W e. LMod /\ X e. ( Base ` W ) /\ X =/= .0. ) -> ( N ` { X } ) e. A ) |
17 |
10 15 7 16
|
syl3anc |
|- ( ph -> ( N ` { X } ) e. A ) |
18 |
3 4 17 5
|
lsatcmp |
|- ( ph -> ( ( N ` { X } ) C_ U <-> ( N ` { X } ) = U ) ) |
19 |
12 18
|
mpbid |
|- ( ph -> ( N ` { X } ) = U ) |
20 |
19
|
eqcomd |
|- ( ph -> U = ( N ` { X } ) ) |