| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatelb.v |
|- V = ( Base ` W ) |
| 2 |
|
lsatelb.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
lsatelb.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lsatelb.a |
|- A = ( LSAtoms ` W ) |
| 5 |
|
lsatelb.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lsatelb.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 7 |
|
lsatelb.u |
|- ( ph -> U e. A ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ X e. U ) -> W e. LVec ) |
| 9 |
7
|
adantr |
|- ( ( ph /\ X e. U ) -> U e. A ) |
| 10 |
|
simpr |
|- ( ( ph /\ X e. U ) -> X e. U ) |
| 11 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
| 12 |
6 11
|
sylib |
|- ( ph -> ( X e. V /\ X =/= .0. ) ) |
| 13 |
12
|
simprd |
|- ( ph -> X =/= .0. ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ X e. U ) -> X =/= .0. ) |
| 15 |
2 3 4 8 9 10 14
|
lsatel |
|- ( ( ph /\ X e. U ) -> U = ( N ` { X } ) ) |
| 16 |
|
eqimss2 |
|- ( U = ( N ` { X } ) -> ( N ` { X } ) C_ U ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ U = ( N ` { X } ) ) -> ( N ` { X } ) C_ U ) |
| 18 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 19 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 20 |
5 19
|
syl |
|- ( ph -> W e. LMod ) |
| 21 |
18 4 20 7
|
lsatlssel |
|- ( ph -> U e. ( LSubSp ` W ) ) |
| 22 |
6
|
eldifad |
|- ( ph -> X e. V ) |
| 23 |
1 18 3 20 21 22
|
ellspsn5b |
|- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ U = ( N ` { X } ) ) -> ( X e. U <-> ( N ` { X } ) C_ U ) ) |
| 25 |
17 24
|
mpbird |
|- ( ( ph /\ U = ( N ` { X } ) ) -> X e. U ) |
| 26 |
15 25
|
impbida |
|- ( ph -> ( X e. U <-> U = ( N ` { X } ) ) ) |