Metamath Proof Explorer


Theorem lsatlssel

Description: An atom is a subspace. (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatlss.s
|- S = ( LSubSp ` W )
lsatlss.a
|- A = ( LSAtoms ` W )
lssatssel.w
|- ( ph -> W e. LMod )
lssatssel.u
|- ( ph -> U e. A )
Assertion lsatlssel
|- ( ph -> U e. S )

Proof

Step Hyp Ref Expression
1 lsatlss.s
 |-  S = ( LSubSp ` W )
2 lsatlss.a
 |-  A = ( LSAtoms ` W )
3 lssatssel.w
 |-  ( ph -> W e. LMod )
4 lssatssel.u
 |-  ( ph -> U e. A )
5 1 2 lsatlss
 |-  ( W e. LMod -> A C_ S )
6 3 5 syl
 |-  ( ph -> A C_ S )
7 6 4 sseldd
 |-  ( ph -> U e. S )