Description: An atom is a subspace. (Contributed by NM, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsatlss.s | |- S = ( LSubSp ` W ) |
|
| lsatlss.a | |- A = ( LSAtoms ` W ) |
||
| lssatssel.w | |- ( ph -> W e. LMod ) |
||
| lssatssel.u | |- ( ph -> U e. A ) |
||
| Assertion | lsatlssel | |- ( ph -> U e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatlss.s | |- S = ( LSubSp ` W ) |
|
| 2 | lsatlss.a | |- A = ( LSAtoms ` W ) |
|
| 3 | lssatssel.w | |- ( ph -> W e. LMod ) |
|
| 4 | lssatssel.u | |- ( ph -> U e. A ) |
|
| 5 | 1 2 | lsatlss | |- ( W e. LMod -> A C_ S ) |
| 6 | 3 5 | syl | |- ( ph -> A C_ S ) |
| 7 | 6 4 | sseldd | |- ( ph -> U e. S ) |