Description: An atom is a subspace. (Contributed by NM, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsatlss.s | |- S = ( LSubSp ` W ) |
|
lsatlss.a | |- A = ( LSAtoms ` W ) |
||
lssatssel.w | |- ( ph -> W e. LMod ) |
||
lssatssel.u | |- ( ph -> U e. A ) |
||
Assertion | lsatlssel | |- ( ph -> U e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatlss.s | |- S = ( LSubSp ` W ) |
|
2 | lsatlss.a | |- A = ( LSAtoms ` W ) |
|
3 | lssatssel.w | |- ( ph -> W e. LMod ) |
|
4 | lssatssel.u | |- ( ph -> U e. A ) |
|
5 | 1 2 | lsatlss | |- ( W e. LMod -> A C_ S ) |
6 | 3 5 | syl | |- ( ph -> A C_ S ) |
7 | 6 4 | sseldd | |- ( ph -> U e. S ) |