Step |
Hyp |
Ref |
Expression |
1 |
|
lsatlss.s |
|- S = ( LSubSp ` W ) |
2 |
|
lsatlss.a |
|- A = ( LSAtoms ` W ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
5 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
6 |
3 4 5 2
|
lsatset |
|- ( W e. LMod -> A = ran ( v e. ( ( Base ` W ) \ { ( 0g ` W ) } ) |-> ( ( LSpan ` W ) ` { v } ) ) ) |
7 |
|
eldifi |
|- ( v e. ( ( Base ` W ) \ { ( 0g ` W ) } ) -> v e. ( Base ` W ) ) |
8 |
3 1 4
|
lspsncl |
|- ( ( W e. LMod /\ v e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { v } ) e. S ) |
9 |
7 8
|
sylan2 |
|- ( ( W e. LMod /\ v e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) -> ( ( LSpan ` W ) ` { v } ) e. S ) |
10 |
9
|
fmpttd |
|- ( W e. LMod -> ( v e. ( ( Base ` W ) \ { ( 0g ` W ) } ) |-> ( ( LSpan ` W ) ` { v } ) ) : ( ( Base ` W ) \ { ( 0g ` W ) } ) --> S ) |
11 |
10
|
frnd |
|- ( W e. LMod -> ran ( v e. ( ( Base ` W ) \ { ( 0g ` W ) } ) |-> ( ( LSpan ` W ) ` { v } ) ) C_ S ) |
12 |
6 11
|
eqsstrd |
|- ( W e. LMod -> A C_ S ) |