Metamath Proof Explorer


Theorem lsatlss

Description: The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lsatlss.s S = LSubSp W
lsatlss.a A = LSAtoms W
Assertion lsatlss W LMod A S

Proof

Step Hyp Ref Expression
1 lsatlss.s S = LSubSp W
2 lsatlss.a A = LSAtoms W
3 eqid Base W = Base W
4 eqid LSpan W = LSpan W
5 eqid 0 W = 0 W
6 3 4 5 2 lsatset W LMod A = ran v Base W 0 W LSpan W v
7 eldifi v Base W 0 W v Base W
8 3 1 4 lspsncl W LMod v Base W LSpan W v S
9 7 8 sylan2 W LMod v Base W 0 W LSpan W v S
10 9 fmpttd W LMod v Base W 0 W LSpan W v : Base W 0 W S
11 10 frnd W LMod ran v Base W 0 W LSpan W v S
12 6 11 eqsstrd W LMod A S