Metamath Proof Explorer


Theorem lsatlssel

Description: An atom is a subspace. (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatlss.s S = LSubSp W
lsatlss.a A = LSAtoms W
lssatssel.w φ W LMod
lssatssel.u φ U A
Assertion lsatlssel φ U S

Proof

Step Hyp Ref Expression
1 lsatlss.s S = LSubSp W
2 lsatlss.a A = LSAtoms W
3 lssatssel.w φ W LMod
4 lssatssel.u φ U A
5 1 2 lsatlss W LMod A S
6 3 5 syl φ A S
7 6 4 sseldd φ U S