Metamath Proof Explorer


Theorem lsatssv

Description: An atom is a set of vectors. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lsatssv.v V = Base W
lsatssv.a A = LSAtoms W
lsatssv.w φ W LMod
lsatssv.g φ Q A
Assertion lsatssv φ Q V

Proof

Step Hyp Ref Expression
1 lsatssv.v V = Base W
2 lsatssv.a A = LSAtoms W
3 lsatssv.w φ W LMod
4 lsatssv.g φ Q A
5 eqid LSubSp W = LSubSp W
6 5 2 3 4 lsatlssel φ Q LSubSp W
7 1 5 lssss Q LSubSp W Q V
8 6 7 syl φ Q V