Metamath Proof Explorer


Theorem lsatelbN

Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lsatelb.v 𝑉 = ( Base ‘ 𝑊 )
lsatelb.o 0 = ( 0g𝑊 )
lsatelb.n 𝑁 = ( LSpan ‘ 𝑊 )
lsatelb.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatelb.w ( 𝜑𝑊 ∈ LVec )
lsatelb.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lsatelb.u ( 𝜑𝑈𝐴 )
Assertion lsatelbN ( 𝜑 → ( 𝑋𝑈𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) )

Proof

Step Hyp Ref Expression
1 lsatelb.v 𝑉 = ( Base ‘ 𝑊 )
2 lsatelb.o 0 = ( 0g𝑊 )
3 lsatelb.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lsatelb.a 𝐴 = ( LSAtoms ‘ 𝑊 )
5 lsatelb.w ( 𝜑𝑊 ∈ LVec )
6 lsatelb.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
7 lsatelb.u ( 𝜑𝑈𝐴 )
8 5 adantr ( ( 𝜑𝑋𝑈 ) → 𝑊 ∈ LVec )
9 7 adantr ( ( 𝜑𝑋𝑈 ) → 𝑈𝐴 )
10 simpr ( ( 𝜑𝑋𝑈 ) → 𝑋𝑈 )
11 eldifsn ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋𝑉𝑋0 ) )
12 6 11 sylib ( 𝜑 → ( 𝑋𝑉𝑋0 ) )
13 12 simprd ( 𝜑𝑋0 )
14 13 adantr ( ( 𝜑𝑋𝑈 ) → 𝑋0 )
15 2 3 4 8 9 10 14 lsatel ( ( 𝜑𝑋𝑈 ) → 𝑈 = ( 𝑁 ‘ { 𝑋 } ) )
16 eqimss2 ( 𝑈 = ( 𝑁 ‘ { 𝑋 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 )
17 16 adantl ( ( 𝜑𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 )
18 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
19 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
20 5 19 syl ( 𝜑𝑊 ∈ LMod )
21 18 4 20 7 lsatlssel ( 𝜑𝑈 ∈ ( LSubSp ‘ 𝑊 ) )
22 6 eldifad ( 𝜑𝑋𝑉 )
23 1 18 3 20 21 22 lspsnel5 ( 𝜑 → ( 𝑋𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) )
24 23 adantr ( ( 𝜑𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑋𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) )
25 17 24 mpbird ( ( 𝜑𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) → 𝑋𝑈 )
26 15 25 impbida ( 𝜑 → ( 𝑋𝑈𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) )