Step |
Hyp |
Ref |
Expression |
1 |
|
lsatelb.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsatelb.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lsatelb.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lsatelb.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
5 |
|
lsatelb.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lsatelb.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
7 |
|
lsatelb.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LVec ) |
9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝐴 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
11 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
12 |
6 11
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
13 |
12
|
simprd |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ≠ 0 ) |
15 |
2 3 4 8 9 10 14
|
lsatel |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) |
16 |
|
eqimss2 |
⊢ ( 𝑈 = ( 𝑁 ‘ { 𝑋 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
18 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
19 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
21 |
18 4 20 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
22 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
23 |
1 18 3 20 21 22
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑋 ∈ 𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
25 |
17 24
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) → 𝑋 ∈ 𝑈 ) |
26 |
15 25
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ 𝑈 = ( 𝑁 ‘ { 𝑋 } ) ) ) |