Metamath Proof Explorer


Theorem lsatel

Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatel.o 0 ˙ = 0 W
lsatel.n N = LSpan W
lsatel.a A = LSAtoms W
lsatel.w φ W LVec
lsatel.u φ U A
lsatel.x φ X U
lsatel.e φ X 0 ˙
Assertion lsatel φ U = N X

Proof

Step Hyp Ref Expression
1 lsatel.o 0 ˙ = 0 W
2 lsatel.n N = LSpan W
3 lsatel.a A = LSAtoms W
4 lsatel.w φ W LVec
5 lsatel.u φ U A
6 lsatel.x φ X U
7 lsatel.e φ X 0 ˙
8 eqid LSubSp W = LSubSp W
9 lveclmod W LVec W LMod
10 4 9 syl φ W LMod
11 8 3 10 5 lsatlssel φ U LSubSp W
12 8 2 10 11 6 lspsnel5a φ N X U
13 eqid Base W = Base W
14 13 8 lssel U LSubSp W X U X Base W
15 11 6 14 syl2anc φ X Base W
16 13 2 1 3 lsatlspsn2 W LMod X Base W X 0 ˙ N X A
17 10 15 7 16 syl3anc φ N X A
18 3 4 17 5 lsatcmp φ N X U N X = U
19 12 18 mpbid φ N X = U
20 19 eqcomd φ U = N X