| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcmp2.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lsatcmp2.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 3 |
|
lsatcmp2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 4 |
|
lsatcmp2.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
| 5 |
|
lsatcmp2.u |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∨ 𝑈 = { 0 } ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ⊆ 𝑈 ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → 𝑊 ∈ LVec ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ∈ 𝐴 ) |
| 9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → 𝑊 ∈ LMod ) |
| 12 |
1 2 11 8 6
|
lsatssn0 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → 𝑈 ≠ { 0 } ) |
| 13 |
5
|
ord |
⊢ ( 𝜑 → ( ¬ 𝑈 ∈ 𝐴 → 𝑈 = { 0 } ) ) |
| 14 |
13
|
necon1ad |
⊢ ( 𝜑 → ( 𝑈 ≠ { 0 } → 𝑈 ∈ 𝐴 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑈 ≠ { 0 } → 𝑈 ∈ 𝐴 ) ) |
| 16 |
12 15
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → 𝑈 ∈ 𝐴 ) |
| 17 |
2 7 8 16
|
lsatcmp |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) |
| 18 |
6 17
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 = 𝑈 ) |
| 19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑈 → 𝑇 = 𝑈 ) ) |
| 20 |
|
eqimss |
⊢ ( 𝑇 = 𝑈 → 𝑇 ⊆ 𝑈 ) |
| 21 |
19 20
|
impbid1 |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) |