Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcmp.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
2 |
|
lsatcmp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
3 |
|
lsatcmp.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
4 |
|
lsatcmp.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
5 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
10 |
7 8 9 1
|
islsat |
⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
12 |
4 11
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
13 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) |
14 |
9 1 6 3
|
lsatn0 |
⊢ ( 𝜑 → 𝑇 ≠ { ( 0g ‘ 𝑊 ) } ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑇 ≠ { ( 0g ‘ 𝑊 ) } ) |
16 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑊 ∈ LVec ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
18 |
17 1 6 3
|
lsatlssel |
⊢ ( 𝜑 → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
20 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
22 |
7 9 17 8
|
lspsnat |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∨ 𝑇 = { ( 0g ‘ 𝑊 ) } ) ) |
23 |
16 19 20 21 22
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ∨ 𝑇 = { ( 0g ‘ 𝑊 ) } ) ) |
24 |
23
|
ord |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( ¬ 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → 𝑇 = { ( 0g ‘ 𝑊 ) } ) ) |
25 |
24
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( 𝑇 ≠ { ( 0g ‘ 𝑊 ) } → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
26 |
15 25
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) ∧ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) → ( 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
28 |
|
eqimss |
⊢ ( 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) |
29 |
27 28
|
impbid1 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) ) → ( 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ↔ 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
30 |
29
|
ex |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ↔ 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
31 |
13 30
|
syl5bi |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) → ( 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ↔ 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
32 |
|
sseq2 |
⊢ ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
33 |
|
eqeq2 |
⊢ ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑇 = 𝑈 ↔ 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
34 |
32 33
|
bibi12d |
⊢ ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ↔ ( 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ↔ 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
35 |
34
|
biimprcd |
⊢ ( ( 𝑇 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ↔ 𝑇 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) ) |
36 |
31 35
|
syl6 |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) → ( 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) ) ) |
37 |
36
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) 𝑈 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) ) |
38 |
12 37
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) |